If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=9Y^2-46Y+48
We move all terms to the left:
-(9Y^2-46Y+48)=0
We get rid of parentheses
-9Y^2+46Y-48=0
a = -9; b = 46; c = -48;
Δ = b2-4ac
Δ = 462-4·(-9)·(-48)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-2\sqrt{97}}{2*-9}=\frac{-46-2\sqrt{97}}{-18} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+2\sqrt{97}}{2*-9}=\frac{-46+2\sqrt{97}}{-18} $
| P(x)=9+x-5x^2 | | 17s+1=-2s+38 | | 4z-1=4z+11 | | -4(6x+2)=-128 | | x^-10x-24=0 | | 56/14=2.5/h | | Y=7x^2-x+8 | | 1/3-x+5/3=x-8 | | P+2p+3=18 | | -4(-6x+2)=-192 | | 10u+9u+12u+-16u=15 | | 12x-7=-11 | | 39/13=2.5/x | | 0.125x^2-1.5x+7=0 | | 10u—9u—12u+-16u=15 | | 35c+29=6c | | 5/12-4=3/4+2x | | 45/15=1.5/x | | 2b-2b+4b=16 | | 18h-10h=8 | | 48/12=1.5/x | | 1/9a-4-1=0 | | 10g-9=11 | | Y^2-6y-20=3y+2 | | 44/11=1.5/x | | 2•-5+6x=-29 | | x^2(16x^2+3)=0 | | 17w+-16w+7=18 | | 8x^2-13x-1=0 | | (2x+10)(2x+5)=150 | | 5/3(w+5)=9 | | 5t^2-70.71t=0 |